Les trous noirs stellaires sont formés par des étoiles. Les étoiles, à la fin de leur « vie », connaissent des destins très différents dont la nature dépend de la masse initiale de l'étoile. En effet, les réactions de fusion nucléaire qui ont lieu dans le noyau des étoiles produisent des éléments de plus en plus lourds, en commençant par l'hydrogène. Or, la nature du plus lourd des éléments formés dépend de la pression au centre de l'étoile, laquelle est reliée à la masse.

La voûte céleste telle que la verrait un observateur situé près d'un trou noir devant le centre de notre galaxie. ©© Alain R - CC BY-SA 2.5

La voûte céleste telle que la verrait un observateur situé près d'un trou noir devant le centre de notre galaxie. © © Alain R - CC BY-SA 2.5

De l'étoile à la géante rouge

Lorsqu'une étoile brûle son hydrogène, on dit qu'elle est dans la séquence principale. Une fois tout l'hydrogène consommé, l'étoile commence à brûler l'hélium ; elle se transforme en géante rouge. La suite des événements dépend de la masse de l'étoile. Une étoile peu massive, comme le Soleil, ne peut pas aller très loin dans la fusion, et ne pouvant brûler le carbone formé par la fusion de l'hélium, son noyau se contracte pour devenir une naine blanche, sorte de cristal de carbone baigné d'électrons qui résiste à l'effondrement gravitationnel grâce à la pression de dégénérescence de ces derniers. Cependant, la pression du gaz dégénéré ne peut résister face à la gravitation que si la masse totale est plus faible qu'une certaine valeur limite. C'est pourquoi les naines blanches ont une masse inférieure à environ 1,5 masses solaires ; c'est la limite de Chandrasekhar.

De l'étoile à l'étoile à neutrons

Toutefois, ce cas de figure ne se présente que pour les étoiles qui sont suffisamment massives pour pouvoir aller au-delà de la fusion de l'hélium. Ces dernières forment ainsi divers éléments jusqu'au Fer56, lequel étant le plus stable des éléments est inerte et s'accumule au centre des étoiles. Ainsi, ce noyau de fer, qui résiste lui aussi grâce à la pression de dégénérescence des électrons, s'effondre soudainement lorsque sa masse dépasse la masse de Chandrasekhar. Cet effondrement brise les noyaux, les électrons fusionnant alors avec les protons produits pour former des neutrons. S'il n'a pas une masse trop élevée et si l'effondrement n'a pas été trop violent, le plasma d'électrons, protons et neutrons ainsi produit peut résister à la force gravitationnelle grâce à la dégénérescence des nucléons mais aussi et surtout grâce à l'interaction forte qui est répulsive à courtes distances. Le noyau s'est alors stabilisé pour devenir une étoile à neutrons.

De l'étoile au trou noir

Cependant si le noyau de Fer56 a une masse supérieure à la limite d'Oppenheimer-Volkoff (située entre 2.4 et 3.2 masses solaires), rien ne peut compenser la force gravitationnelle et l'étoile s'effondre en-deçà de son rayon de Schwarzschild pour devenir un trou noir.

Les trous noirs stellaires sont donc formés par des étoiles de plus de 30 masses solaires (environ), qui s'effondrent sur elles-mêmes sans que rien ne puisse stopper le processus.