Certaines supernovae très brillantes pourraient provenir de la création de paires de particule et antiparticule. Un groupe d’astrophysiciens pense avoir observé le premier exemple indiscutable de ce type d’explosion d’étoile avec de l’antimatière : SN 2016iet.

Il y a presque 50 ans, plusieurs astrophysiciens théoriciens ont prédit que certaines étoiles étaient instables à cause d'un phénomène bien décrit par les équations de l'électrodynamique quantique. En effet, avec une paire de photons gamma suffisamment énergétiques, un calcul mené à l'aide des fameux diagrammes de Feynman, bien connus des spécialistes de la physique des hautes énergies, indique que des paires de particule-antiparticule peuvent être créées.

Dans le cas d'une étoile très massive dépassant les 100 masses solaires, beaucoup des photons produits par les réactions thermonucléaires dans le cœur de ces étoiles sont dans le domaine gamma. Or, ils peuvent donner naissance chacun à une paire d’électron-positron s'ils possèdent suffisamment d'énergie. Il s'agit au fond d'une conséquence assez simple de la formule d'Einstein, E=mc2, l'énergie des photons étant convertie en la masse des deux particules.

Lorsque la création de matière et d'antimatière selon ce processus devient importante, la pression du flux de photons gamma sur les couches de l'étoile devient insuffisante pour s'opposer à sa contraction sous l'effet de sa propre gravité, car une partie du rayonnement est convertie en une composante qui se comporte comme un mélange de gaz à plus faible pression. Or, cette même contraction va augmenter le taux des réactions nucléaires en chauffant le cœur de l'étoile. La production de photons gamma créateurs d'antimatière va encore être accrue et le processus devient instable lorsque l'étoile contient au moins 130-140 masses solaires (en dessous, il se produit des oscillations et l'étoile devient pulsante). Il s'emballe.

Un schéma illustrant la structure d’une jeune étoile massive, plus de 100 fois la masse du Soleil comme devaient l'être les étoiles de première génération quelques centaines de millions d’années tout au plus après le Big Bang. Comme dans toutes les étoiles, la pression du gaz de particules, noyaux, électrons et photons est normalement en équilibre avec la pression causée par la gravité de l’étoile. Mais dans une étoile d’au moins 140 masses solaires, les photons gamma sont si énergétiques (les traits ondulés sur le schéma) qu’ils finissent par créer des paires d’électron et de positron, donc de l’antimatière. © Nasa/CXC/M. Weiss
Un schéma illustrant la structure d’une jeune étoile massive, plus de 100 fois la masse du Soleil comme devaient l'être les étoiles de première génération quelques centaines de millions d’années tout au plus après le Big Bang. Comme dans toutes les étoiles, la pression du gaz de particules, noyaux, électrons et photons est normalement en équilibre avec la pression causée par la gravité de l’étoile. Mais dans une étoile d’au moins 140 masses solaires, les photons gamma sont si énergétiques (les traits ondulés sur le schéma) qu’ils finissent par créer des paires d’électron et de positron, donc de l’antimatière. © Nasa/CXC/M. Weiss

La température ne va cesser de grimper et en très peu de temps le cœur de l'étoile, contenant un mélange de noyaux de carbone et d'oxygène, va exploser du fait des réactions thermonucléaires qui se produisent alors en convertissant sa matière en noyaux lourds. Prend alors naissance un nouveau type de supernova baptisée Pair Instability Supernovae (PISNe) ne laissant aucun astre compact derrière elle (sauf éventuellement un trou noir si l'étoile est suffisamment massive, c'est-à-dire probablement au-delà de 260 masses solaires). L'explosion doit surpasser celle d'une supernova normale et s'accompagner de la production d'une grande quantité de nickel radioactif en plus d'une grande quantité de matière éjectée.

Mais attention, si l'étoile est en quelque sorte annihilée, ce n'est pas la production d'antimatière qui en est responsable, les positrons ne pouvant d'ailleurs pas annihiler les protons et les neutrons des noyaux de l'étoile. C'est bien le souffle de l'explosion, l'onde de choc produite, qui disperse totalement la matière de l'étoile génitrice de la PISNe.

SN 2016iet : une supernova exotique repérée par Gaia

Depuis quelques années, des candidats au titre de PISNe ont été détectés mais en dernière analyse, aucun n'a finalement convaincu la communauté des astrophysiciens. Il semble que cela va changer avec l'annonce faite par une équipe de chercheurs principalement états-uniens via un article publié dans The Astrophysical Journal et en accès libre sur arXiv.

Tout a commencé, le 14 novembre 2016, avec la détection par le satellite Gaia de l'ESA de la supernova cataloguée sous la dénomination de SN 2016iet. Elle a rapidement mobilisé une batterie de télescopes et d'observateurs, en particulier le télescope Gemini North au sommet du Mauna kea à Hawaï, mais aussi le télescope Magellan situé à l'observatoire Las Campanas au Chili.

Image de SN 2016iet et de sa galaxie hôte la plus probable, prise avec le télescope de 6,5 mètres à l'observatoire de Las Campanas, le 9 juillet 2018. © Gemini Observatory
Image de SN 2016iet et de sa galaxie hôte la plus probable, prise avec le télescope de 6,5 mètres à l'observatoire de Las Campanas, le 9 juillet 2018. © Gemini Observatory

SN 2016iet s'est révélée être une supernova très inhabituelle, déjà par le fait que la durée de sa courbe de lumière était anormalement longue et il a fallu environ 800 jours avant que sa luminosité tombe au centième de celle qu'elle avait à son maximum. Il y avait aussi peu d'émissions de raie de l'hydrogène, ce qui indiquait une étoile plutôt isolée ainsi qu'un manque de signatures de la présence d'éléments lourds. Il s'agissait somme toute de signatures chimiques très curieuses pour une supernova dont la distance à la Voie lactée (environ un milliard d'années-lumière) indiquait qu'elle était intrinsèquement très lumineuse pour être aussi brillante et devait donc provenir d'une étoile particulièrement massive.

Selon les astrophysiciens, toutes ces caractéristiques s'interprètent très bien si l'on est en présence d'une supernova par production de paires qui est, soit une vraie PISNe si l'étoile génitrice était assez massive, soit, dans le cas contraire, une variante que l'on appelle une PPISNe pour pulsational pair-instability supernova, en anglais. Dans ce dernier cas, il y a bien une production d'antimatière et un emballement des réactions thermonucléaires, mais l'explosion résultante ne fait qu'éjecter quelques dizaines de masses solaires, sans détruire l'étoile initiale qui devient dès lors potentiellement pas suffisamment massive pour que se produise à nouveau une PPISNe.

Les chercheurs sont tout de même un peu perplexes du fait que l'étoile génitrice était assez isolée alors que des étoiles dépassant les 100 masses solaires ne naissent de nos jours, et rarement, que dans des amas d'étoiles. Autrefois, ces béhémoths devaient constituer les toutes premières étoiles mais avec ces masses, elles ne peuvent vivre que quelques millions d'années tout au plus.

Par contre, on s'attendait à la formation de ces étoiles géantes dans un milieu pauvre en éléments métalliques, comme disent les astrophysiciens, ce qui dans leur jargon signifie pauvre en éléments au-delà de l'hydrogène et l'hélium. On trouve ce milieu dans les galaxies naines qui n'ont pas pu évoluer chimiquement de façon importante du fait de leurs caractéristiques. Il se trouve précisément que SN 2016iet s'est formée à quelques dizaines de milliers d'années-lumière d'une telle galaxie.

La mise en service prochaine du LSST devrait permettre de détecter un plus grand nombre de supernovae et donc, espérons-le, de candidats au titre de supernova par production de paires. Leur existence, qui signale aussi celle d'étoiles massives, sera alors assise sur des bases encore plus solides.