L’onde de pouls est connue pour vérifier la fréquence cardiaque d’un individu. Une équipe de recherche internationale vient de montrer qu’il n’existe pas une onde, mais deux. Cette seconde onde dite « de flexion » n’avait encore jamais été observée et vient compléter notre connaissance sur le pouls.
au sommaire
Depuis 1820, l'onde de pouls est utilisée dans la vie courante pour vérifier la fréquence cardiaque d'un sportif, d'une personne inanimée, ou encore pour évaluer l'état de santé des artères. Elle correspond à la dilatation de la paroi artérielle suite à l'afflux du sang provoqué par les contractions cardiaques, qui se propage de façon ondulatoire le long des artères partout dans le corps.
Une équipe de recherche internationale dirigée par Stefan Catheline, chercheur Inserm au sein du Laboratoire des applicationsapplications thérapeutiques des ultrasonsultrasons (Inserm/Université Claude BernardClaude Bernard Lyon 1/Centre Léon Bérard), vient de montrer qu'en réalité il n'y a pas une onde de pouls mais deux. En plus de l'onde principale, bien connue et que l'on perçoit au toucher au niveau de la carotide ou à la base du poignet, il en existe une seconde, plus discrète mais facilement observable à l'échographie : l'« onde de flexion », jamais décrite jusque-là. Les résultats sont parus dans Science Advances.
Une « onde de flexion » découverte un peu par hasard
C'est un peu par hasard que l'équipe de Stefan Catheline a fait cette découverte. Spécialisée dans les ondes et les thérapiesthérapies par ultrasons, elle avait été sollicitée pour tester un outil innovant d'analyse de la rétinerétine : l'holographie laserlaser doppler. Cette dernière consiste à photographier l'organe à toute vitessevitesse à très fine résolutionrésolution pour observer ce qu'il s'y passe ; et notamment suivre les artères en mouvementmouvement. Les chercheurs qui avaient développé cet outil voulaient savoir s'il pouvait permettre de calculer la vitesse de propagation de l'onde de pouls dans la rétine. L'équipe de Stefan Catheline est non seulement bien parvenue à mesurer cette onde - qui circule à environ un mètre par seconde - mais a également détecté un second signal ondulatoire près de mille fois plus lent.
Ce sont les principes de la physiquephysique fondamentale sur la circulation d'ondes dans les tubes qui a permis aux scientifiques de mieux comprendre ce phénomène. Le long des artères, les deux types d'ondes observées se propagent en fait de deux façons sous l'effet du passage du sang. La première est symétrique par rapport à l'axe central du vaisseau et correspond à la dilatation des parois des artères avec une augmentation du diamètre. La seconde est asymétriqueasymétrique et résulte de la torsiontorsion du tube d'une manière dite « sinusoïdale ». « Pour visualiser cela, il faut s'imaginer un serpent qui a avalé une proie qui glisse le long du tube digestiftube digestif, et qui s'en va en même temps en ondulant », illustre Stefan Catheline.
Suite à cette découverte, l'équipe de recherche a effectué de nouvelles mesures du pouls par échographie (ultrasons) le long de la carotide d'individus et a bien retrouvé les deux ondes. « Il nous a fallu moins d'un après-midi pour confirmer le résultat. Cette seconde onde, appelée "onde de flexion", est présente sur tous les enregistrements et n'est pas difficile à observer. Si elle n'avait jamais été décrite, c'est tout simplement parce qu'elle n'était pas recherchée », explique Stefan Catheline.
L'utilité de cette seconde onde
L'onde de pouls principale est très utilisée en médecine et reflète la santé cardiovasculaire d'un individu. Sa vitesse de propagation dépend en effet de l'état des parois des artères : plus elles sont souples et jeunes, plus la vitesse est lente et inversement en vieillissant. Or des artères rigides sont un facteur de risque d’accident cardiovasculaire. Cependant, compte tenu de la grande vitesse de propagation de cette onde, il est nécessaire de la mesurer sur plusieurs centimètres pour obtenir une valeur fiable.
« Avec l'onde de flexion que nous décrivons ici, dont la vitesse lente va d'un dixième à un millième de mètre par seconde selon le diamètre de l'artère, il est plus facile d'étudier le signal sur des fragments très courts et avec d'autres types d'appareil que l'échographie, en particulier la radiographieradiographie et l'IRMIRM, explique Stefan Catheline. Un millimètre suffit pour obtenir une valeur précise permettant par exemple d'évaluer l'état des artères dans la rétine », précise-t-il.
Le chercheur voit un deuxième avantage à l'utilisation de cette onde de flexion en clinique : en continuant à se propager dans les veines là où l'onde de pouls principale n'y est plus détectable en raison de l'éloignement du cœur, elle renseignerait également sur la rigiditérigidité de la paroi veineuse. Il précise toutefois que, pour en faire un outil clinique, il sera nécessaire de mener des travaux chez l'humain afin de corréler vitesse de propagation et élasticitéélasticité de la paroi comme cela a été fait précédemment pour l'onde principale de dilatation.